PerformanceEvaluation object with these fields:
model, measure, operation,
measurement, per_fold, per_observation,
fitted_params_per_fold, report_per_fold,
train_test_rows, resampling, repeats
Extract:
┌───┬──────────────────────────┬──────────────┬─────────────────────────────────
│ │ measure │ operation │ measurement ⋯
├───┼──────────────────────────┼──────────────┼─────────────────────────────────
│ A │ LogLoss( │ predict │ 0.375 ⋯
│ │ tol = 2.22045e-16) │ │ ⋯
│ B │ ConfusionMatrix( │ predict_mode │ ConfusionMatrix{2}([3821534 78 ⋯
│ │ levels = nothing, │ │ ⋯
│ │ perm = nothing, │ │ ⋯
│ │ rev = nothing, │ │ ⋯
│ │ checks = true) │ │ ⋯
│ C │ TruePositiveRate( │ predict_mode │ 0.128 ⋯
│ │ levels = nothing, │ │ ⋯
│ │ rev = nothing, │ │ ⋯
│ │ checks = true) │ │ ⋯
│ D │ TrueNegativeRate( │ predict_mode │ 1.0 ⋯
│ │ levels = nothing, │ │ ⋯
│ │ rev = nothing, │ │ ⋯
│ │ checks = true) │ │ ⋯
│ E │ PositivePredictiveValue( │ predict_mode │ 0.994 ⋯
│ │ levels = nothing, │ │ ⋯
│ │ rev = nothing, │ │ ⋯
│ │ checks = true) │ │ ⋯
│ F │ NegativePredictiveValue( │ predict_mode │ 0.83 ⋯
│ │ levels = nothing, │ │ ⋯
│ │ rev = nothing, │ │ ⋯
│ ⋮ │ ⋮ │ ⋮ │ ⋮ ⋱
└───┴──────────────────────────┴──────────────┴─────────────────────────────────
1 column and 2 rows omitted
┌───┬───────────────────────────────────────────────────────────────────────────
│ │ per_fold ⋯
├───┼───────────────────────────────────────────────────────────────────────────
│ A │ [0.391, 0.394, 0.35, 0.358, 0.365, 0.391] ⋯
│ B │ ConfusionMatrix{2, true, CategoricalValue{String, UInt32}}[ConfusionMatr ⋯
│ C │ [0.125, 0.167, 0.155, 0.112, 0.113, 0.0952] ⋯
│ D │ [1.0, 0.999, 1.0, 1.0, 1.0, 1.0] ⋯
│ E │ [1.0, 0.966, 1.0, 1.0, 1.0, 1.0] ⋯
│ F │ [0.83, 0.837, 0.835, 0.827, 0.828, 0.825] ⋯
│ G │ [0.834, 0.841, 0.84, 0.831, 0.832, 0.828] ⋯
└───┴───────────────────────────────────────────────────────────────────────────
2 columns omitted