Examen de Óptica 2020-11-13

Titulación: Grado en Óptica
Fecha: 13 de Noviembre de 2020

Ejercicio 1

En una muestra de familias se ha medido la estatura del padre (X), de la madre (Y) y de un hijo (Z) en centímetros, obteniendo los siguientes resultados:

Estatura padreEstatura madreEstatura hijo175164177182175180190165193165160172172155173183172188187160185174151177168165168178163182

Se pide:

  1. ¿En qué grupo es más representativa la media, en el de padres o en el de madres?

  2. ¿Hay alguna estatura atípica entre los hijos?

  3. Según su forma, ¿puede provenir la muestra de madres de una distribución normal?

  4. ¿Quién es más alto dentro de su grupo, una madre con una altura de 165 cm o un hijo con una altura de 178 cm?

  5. ¿Cómo afectaría a la representatividad de las medias que las alturas se midiesen en metros en vez de en centímetros?

Usar las siguientes sumas para los cálculos:
Estatura padre: xi=1774 cm, xi2=315300 cm2, (xix¯)3=210.48 cm3 y (xix¯)4=67596.27 cm4.
Estatura madre: yi=1630 cm, yi2=266150 cm2, (yiy¯)3=180 cm3 y (yiy¯)4=52324 cm4.
Estatura hijo : zi=1795 cm, zi2=322737 cm2, (ziz¯)3=1008 cm3 y (ziz¯)4=61906.62 cm4.

  1. Padres: x¯=177.4 cm, s2=59.24 cm2, s=7.6968 cm y cv=0.0434.
    Madres: y¯=163 cm, s2=46 cm2, s=6.7823 cm y cv=0.0416.
    La estatura media es un poco más representativa en el grupo de las madres.

  2. Las vallas en la muestra de hijos son f1=155 cm y f2=203 cm por lo que no hay estaturas atípicas entre los hijos.

  3. g1y=0.0577 y g2y=0.5272. Como el coeficiente de asimetría y el de apuntamiento están dentro del intervalo de -2 a 2, podemos asumir que la muestra de estaturas de madres proviene de una población normal.

  4. Puntuación típica madres: z(165)=0.2949.
    Puntuación típica hijos: z(178)=0.2052.
    Así pues, una madre de 165 cm es relativamente más alta que un hijo de 178 cm.

  5. La representatividad de las medias no cambiaría ya que tanto las medias como las desviaciones típicas estarían divididas por 100.

Ejercicio 2

Uno de los parámetros que se suele utilizar para diagnosticar el glaucoma de ángulo abierto es la distancia mínima al borde de la abertura de la membrana de Bruch (X) de la retina, pero se sabe que esta medida depende de la edad del paciente (Y) en años y del área de la abertura de esta membrana por la que pasa el nervio óptico (Z). En un estudio se ha medido en 1000 pacientes estas variables obteniendo los siguientes resultados:

xi=346337.03 μm, yi=47212.1 años, zi=2002.384 mm2,
xi2=123828243.48 μm2, yi2=2601264.99 años2, zi2=4175.89 mm4,
xiyj=15855138.59 μmaños, xizj=686623.65 μmmm2, yizj=94144.37 añosmm2.

Se pide:

  1. Calcular las rectas de regresión de la distancia mínima al borde de la abertura de la membrana de Bruch sobre la edad, y de la distancia mínima al borde de la abertura de la membrana de Bruch sobre el área de la abertura de la membrana.

  2. ¿Cuánto aumenta o disminuye la distancia mínima al borde de la abertura de la membrana de Bruch por cada año más del paciente?

  3. ¿Qué porcentaje de la variabilidad de la distancia mínima al borde de la abertura de la membrana de Bruch explica cada uno de los modelos lineales anteriores?

  4. Utilizando el mejor de los modelos lineales anteriores predecir la distancia mínima al borde de la abertura de la membrana de Bruch de un paciente de 60 años con un área de la abertura de la membrana de 2 mm2.

  1. x¯=346.337 μm, sx2=3878.9051 μm2,
    y¯=47.2121 años, sy2=372.2826 años2,
    z¯=2.0024 mm2, sz2=0.1664 mm4,
    sxy=496.1599 μmaños y sxz=6.8761 μmmm2.
    Recta de regresión de X sobre Y: x=409.259+1.3328y.
    Recta de regresión de X sobre Z: x=429.1056+41.335z.

  2. La distancia mínima al borde de la abertura de la membrana de Bruch disminuye 1.3328 μm por cada año más del paciente.

  3. rxy2=0.1705, de manera que la recta de regresión de X sobre Y explica el 17.05% de la variabilidad de la distancia mínima al borde de la abertura de la membrana de Bruch, y rxz2=0.0733, de manera que la recta de regresión de X sobre Z explica el 7.33% de la variabilidad de la distancia mínima al borde de la abertura de la membrana de Bruch.

  4. x(60)=329.2939 μm.

Siguiente