Physiotherapy exam 2018-04-09

Degrees: Physiotherapy
Date: April 9, 2018

Question 1

The chart below describes the distribution of the head arc of rotation (in degrees) in people working with and without computers.

plot of chunk histogram_head_arc_rotation
  1. Plot the ogive of the head arc of rotation for people working with computers.
  2. If a person with a head arc of rotation less than or equal to 115 degrees is considered a person with reduced mobility, what percentage of people working with computers has reduced mobility?
  3. Which distribution has a more representative mean of the head arc of rotation, people working with computers or people not working with computers?
  4. Compute the global mean of the head arc of rotation.
  5. Which distribution is more asymmetric, people working with computers or people not working with computers?
  6. Which value of the head arc of rotation is relatively less, 150 degrees in people working with computers or 170 in people not working with computers?

Use the following sums for the computations.
With computer: xi=3970 degrees, xi2=534750 degrees2, (xix¯)3=103662.22 degrees3 and (xix¯)4=7903715.56 degrees4.
Without computers: xi=4230 degrees, xi2=645900 degrees2, (xix¯)3=42359.69 degrees3 and (xix¯)4=4101700.53 degrees4.

plot of chunk ogive_head_arc_rotation
  1. F(115)=0.166716.67 of people working with computers have reduced mobility.
  2. With computer: x¯=132.3333 degrees, sx2=312.8889 degrees², sx=17.6887 degrees and cvx=0.1337 Without computer: x¯=151.0714 degrees, sx2=245.2806 degrees², sx=15.6614 degrees and cvx=0.1037 The mean of people working without computer is more representative than the mean of people working with computers since its coefficient of variation is smaller.
  3. x¯=141.3793.
  4. With computer g1=0.6243 and without computer g1=0.3938. Therefore, the distribution of people working with computers is more asymmetric.
  5. Standard scores: z(150)=0.9988 and z(170)=1.2086. Therefore, an arc of rotation of 150 degrees in people working with computers is relatively smaller than an arc of rotation of 170 in people working without computers.

Question 2

The concentration of a drug in blood C, in mg/dl, depends on time t, in hours, according to the following table:

Time2345678Concentration2536486486114168

  1. Which regression model, the linear or the exponential, is more reliable to predict the concentration of the drug as a function of time?
  2. Use the best model to predict the concentration of drug in blood after 4.8 hours.

Use the following sums for the computations:
xi=35, log(xi)=10.6046, yj=541, log(yj)=29.147,
xi2=203, log(xi)2=17.5205, yj2=56937, log(yj)2=124.0131,
xiyj=3328, xilog(yj)=154.3387, log(xi)yj=951.6961, log(xi)log(yj)=46.0805.

  1. Linear model of Concentration on Time: x¯=5 hours, sx2=4 hours² . y¯=77.2857 mg/dl, sy2=2160.7755 (mg/dl)². sxy=89 hours⋅mg/dl.
    Linear coefficient of determination of Concentration on Time r2=0.9165.
    Exponential model of Concentration on Time: log(y)=4.1639 log(mg/dl), slog(y)2=0.3785 log(mg/dl)². sxlog(y)=1.2291 hours⋅log(mg/dl).
    Exponential coefficient of determination of Concentration on Time r2=0.9979.
    Therefore, the exponential model explains better than the linear one the relation between the concentration and time, since its coefficient of determination is greater.

  2. Exponential model of Concentration on Time: y=e2.6275+0.3073x. y(4.8)=60.4853 mg/dl.

Previous
Next